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ABSTRACT
This article presents some mixed problems formulation for third order composite type equation. Under

certain conditions on the coefficients and the equation right side, these problems correctness in S. L. Sobolev
spaces is proved.
Keywords: mixed boundary value problems, equations of composite type, theorem, cylindrical

domain, regular problems, differential equation, S.L. Sobolev spaces, Green's formula.

PROBLEM FORMULATION
Let Q - an organic simply connected domain in an n-dimensional Euclidean spaceR™. For simplicity, assume

that the (n-1) -dimensional boundary dQ of Q belongs to the classC®, those in a sufficiently small neighborhood
of each point x° = (x?, x2, ... xﬁ)e dQthere is a parametric representation of the surface
0Q 2 x; = f(x1, X e ey Xj_1, Xjgq, e Xp)
1<jzn
Such that the function f is infinitely differentiable in this neighborhood.
Assuming that

D=(0,1)xQ,5=00x][0,1]
In the cylindrical domain D c R™™1, we consider the third-order differential equation

dA
Lu = ===+ k(x, )Us + Tmy Urara + €6, U, + B(x, OU + a(O|UPU, = f(x,0) (1)

where,

n
AU = U, + Z Uraxa

a=1
Note that equations of the form (1) belong to the class of equations of composite type [1], [6]. The study of
boundary value problems for equations of composite type is of great interest, especially in the multidimensional
case [2]. Throughout, we will assume that
K(x,t)eC(D) n C*(D), a(x, t)eC(D),
B(x,t)eC(D) n C1(D),0 < I(t)eC[0,1]
A-1<p<——atn>3
(p > —1, arbitrarily at n=1,2).
Denote by V = (V, Vi1 Vya, ... Vir) the internal normal vector to S.

. . . . . . Ulx,t) =21 =0,U; 1 4= =0
The mixed task. Find a solution to equation (1) in the domain D and such that (8 le=1 tle=1 }

Utt|t=0 =0,U(x,t)|s =0
)
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Let C, denote the class of functions from the space satisfying conditions (2).

H= {U: UeWZ(D); 66A—tueL2 D), UteL;(D)}
In the space L3, , p=s+2 the norm is defined as follows
||U||f%7(D) =J;j(t)|Ulpdxdt

Definition. We call the function u (x, t) a regular solution to problem (1) - (2) if u(x,t)e C,
| Up 17U, € Ly(D); = (U *2U) € Ly (D), —= (|U [P U,) el (D)
and u (x, t) satisfies equation (1) almost everywhere in the domain D.

A priori estimates. Mixed problem solvability for composite type equations.

Theorem. Suppose that the above conditions are satisfied for the coefficients of equation (1); let, in
addition, everywhere, conditions

2a(x,t) —AK — K, —2>>6, —AB—p, =6, 6§>0

K(x,0)+ 1 <0, B(x,0) <0 be satisfied in the domain D

then for any functionf (x, t)such that feL,(D) cymectByer there exists a unique regular solution to
problem (1)- (2). Let us prove the following estimates:

NUelIE, 5y + IVUIS + UG ) + NUCNE oy < mIIFIIE(3)

p+1
(0,5p+1)

A
oxi

anu||? 2
| %”0 + Z1r/n=1”ny=y”0 +

3 P 2 P 2
[ll;(wtlzut)ny + e [ Auelzuy| ]szllfllé(4)
Ly Loy

To do this, we use the Galerkin method (see [3], [4]). Let 9,,(x, t) be the functions of the boundary value
problem
Ay, (x, ) = — 79, (x, £)(5)

U (x,0)]¢=1 =0,  Upt — Ap¢li=0 = 0}(6)
19n(x' t)lszl =0

N
UN(x,t) = Z C, W, (x,t)
n=1

where C,, are determined from a system of nonlinear algebraic equations of the form
(LUN,99)0 = (f,9)0, S=12..N 7

The solvability of this system follows from the a priori estimates of approximate solutions obtained below and

the acute angle lemma [5]. Multiplying (7) by 2C, and summing over S from 1 to N we obtain the identity
(LY, UM = (f, 17U, )o ®)




Applying the Green formula and the Cauchy inequality to (8)

2lal - b| < ylal* + [bI?, vy >0
We get

2 2
||Uyz||0 + VU Il5 + IIUlelfp(D) + Uy 0y < mslIf I3

Let us return to the question of the solvability of the system of equations (8).
If you write it in the form Py (¢) = 0, where
¢ =exp (At )(Cq, Cy, ... Cp),

That is a fair assessment
(Pn((::); E)RN = mOHUN”Wzl(D) —my

where m, and m, are some positive constants. By virtue of the fact that the linearly envelope F(W,, W, ... Wy)

is a finite-dimensional space, there exists R, (N) > 0 such that

N
10V o) = Ra) ) (G?
k=1

Hence the inequality holds
(Pa(@), D)y = Ri(NIEI> —my = 0,

If |C| is a large enough quantity, and this is the condition of an “acute angle” sufficient for the solvability of the

system of equations (8). In order for the sequence of {U"}, solutions to be bounded in (HD), it is necessary to
estimate the derivatives% and U,;,;. To this end, thanks to (5)-(7) we can replace 9y B (8) Ha —%Aﬂ,\, .

Multiplying (8) by C,, and summing n from 1 to N, we find

2 aAuN 2 aAuN
(Lu”,—”—e“[ o +2AU§¥+AZU§VD =—17(f,e’“[ P +2,wg¥+,12U§VD 9
0 n 0

Using Green's formula, we get




N

f o[ (o AZ": 92UM\? ZUN gn 4 280"
“ N\ ox 24\ oxiz) T LT g
D i=

i=1

+[(22 = kG, O)UN + (A% + k(x, ©))UYN + B(x,£)U]
—Z — /wtt + 22UN] + [20UN + 22UN] — k(x, OUN — k(x, OUN — B(x, t)UN}dxdt
1
43 [ XU + @I IO 4y O s
S

+feﬂf [l(t)e’“]|U£’|S+1Ut1‘{dxdt+2f eM[1(t) — U |P U] dD —Azfe”wm”zdu
D D D

+ [ ety + DNV + 102U axae

6
=;@ (10)

(I;- is the integral over the region, I,- is the integral over the boundary, I5, I,, Is, Is- are the integrals over the

region with nonlinear terms).

From estimate (3), applying the Cauchy inequality in I; we get that the integral I, admits the estimate

AN\~ [92UNN’
Ilzmﬁf ( ot ) -.'—Z(E)xiZ)
D

dD (11)

i=1

Considering condition (2), we obtain

L=z f [62 w0 dx >0

dxi?
The terms from (10) that are not bilinear can be rewritten in the form

20+ 1) 2

=28 oo (e + o urveun)

i=1

dxdt

(12)
From the representation (14) it is clear that I, > 0. It remains for us to evaluate the integrals I;+ 1,, i.e.
L+1,= j e [f)e]|ul|stulldxdt — 2f e M [y(@®)e*]||UN st Ul dxdt
D D

_ f et (jt — 2)|UN |UN dxdt
D




By Hdlder's inequality, we have

I3 + I, = —max|yt — At””UgVP”L,,(D) . ||Uév||Lp(D)|UtI¥|o

Where g (as in the Sobolev embedding theorem) is determined from the equality

1 1 1
—+-+=-=1
n q 2

Since, according to S< nZTz it follows that S™ < q therefore, by (3), we have
MUF P, < NUF P, < const(lIflo)
S0,
I3 + 1, = —const(lIf lo)maxlyt — At NUM N, U1l (13)

Under the conditions of the theorem on the parameter S (13), we have the embedding
W3(D)CL,(D)(cm.8)
assuming that
const(]|flo) max|yt — At] < 63

And applying the Cauchy inequalities to (13) we get
- 53 53

13+I4- 2 _?IUtI\“%_?lUgV §V21(D) (14)
Consequently, the second estimate follows from (10). So we got the necessary a priori estimates (3) - (4) for an
approximate solution of (1) - (2) problem. Since all derivatives in equation (1) are quadratically summable over
the domain D, it follows from the well-known weak compactness theorem that from an organic sequence of
functions {U"N} we can extract a weakly convergent subsequence of the function{U"} such that for Ni — oo we
have
UMt - U weakly 8 W2 (D)

|UN P UMt > yhweakly 8L}
p+i

S (lur P up) = ¢ weakly s L4(D)

a
oxi

([v¥i [P up) - ¢, weakly & L (D)

aauNt  aau
ot - 5t Weakly BL, (D)

According to Lemma 1.3 of (5, p. 25) on the passage to the limit in a nonlinear term, we have

0

Y = |Ut|p|2Ut5 G = a(lutlplet)

d 2
G = %(thp U)
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Now we can make the passage to the limit in identity (10) as N; — oo. Thus, the existence of a regular solution,
we consider the difference of two possible solutions V (x, t) = U; — U, where U; and U, are two solutions to

the problem, then V (x, t) satisfies the equation

FYNY
LV = % T K(Qx, )V + 202 1a = ~ + YVe + BV + [J|U1|PUy — Uz |PU2]=0 (22)

IVeell§ + IVElIG + Vel y T fD eM ||Use|PUse = |Uze|PUse|(Uye — Uz )dD < 0 (15)

wi (D

Given the monotonicity of the operator |U,.|PU,; we obtain

f et [U1¢|PUse — |Uze|PU2e|(Uye — Upp)dxdt = 0
D

Then it follows from (15) that ||V,.|I3 + ||V,I3 + ||V||§V21 < 0 and means V(x,H)= 0

e.i. Uy(x,t) = U,(x,t) B D.This fact completes the proof of the theorem.

REFERENCES

1. Juraev T.D. Boundary value problems for equations of mixed and mixed-composite types. - Tashkent .:
Science, 1979.

2. Kozhanov A.l. The boundary value problem for a class of third-order equations // Report. USSR
Academy of Sciences, 1979.V.249, No. 3.C. 536-540.
Ladyzhenskaya O.A. Boundary-value problems of mathematical physics. -M.: Science, 1973

4. Larkin N.A. Boundary-value problems as a whole for one class of hyperbolic equations. Sib. Mat.

Journal., 1977. T.XVIII, No. 6. -WITH. 1441-1419

Lyons J.L. Some methods for solving nonlinear boundary value problems. -M.: Mir., 1972.

Salakhitdinov M.S. Equations of mixed-composite type. Tashkent .: Science, 1974.

Fletcher K. Numerical methods based on the Galerkin method. M.: Mir, 1998.-S.346

Qushimov, B., Ganiev, I. M., Rustamova, |., Haitov, B., & Islam, K. R. (2007). Land degradation by

o N o o

agricultural activities in Central Asia. Climate Change and Terrestrial Carbon Sequestration in Central
Asia; Lal, R., Suleimenov, M., Stewart, BA, Hansen, DO, Doraiswamy, P., Eds, 137-146.




